2,643 research outputs found

    Improving Prolog Programs: Refactoring for Prolog

    Full text link
    Refactoring is an established technique from the OO-community to restructure code: it aims at improving software readability, maintainability and extensibility. Although refactoring is not tied to the OO-paradigm in particular, its ideas have not been applied to Logic Programming until now. This paper applies the ideas of refactoring to Prolog programs. A catalogue is presented listing refactorings classified according to scope. Some of the refactorings have been adapted from the OO-paradigm, while others have been specifically designed for Prolog. Also the discrepancy between intended and operational semantics in Prolog is addressed by some of the refactorings. In addition, ViPReSS, a semi-automatic refactoring browser, is discussed and the experience with applying \vipress to a large Prolog legacy system is reported. Our main conclusion is that refactoring is not only a viable technique in Prolog but also a rather desirable one.Comment: To appear in ICLP 200

    Families of Small Regular Graphs of Girth 5

    Get PDF
    In this paper we obtain (q+3)(q+3)--regular graphs of girth 5 with fewer vertices than previously known ones for q=13,17,19q=13,17,19 and for any prime q≄23q \ge 23 performing operations of reductions and amalgams on the Levi graph BqB_q of an elliptic semiplane of type C{\cal C}. We also obtain a 13-regular graph of girth 5 on 236 vertices from B11B_{11} using the same technique

    Dynamical model of sequential spatial memory: winnerless competition of patterns

    Full text link
    We introduce a new biologically-motivated model of sequential spatial memory which is based on the principle of winnerless competition (WLC). We implement this mechanism in a two-layer neural network structure and present the learning dynamics which leads to the formation of a WLC network. After learning, the system is capable of associative retrieval of pre-recorded sequences of spatial patterns.Comment: 4 pages, submitted to PR

    A new skeleton of the cryptoclidid plesiosaur Tatenectes laramiensis reveals a novel body shape among plesiosaurs

    Get PDF
    Current knowledge of plesiosaurs of clade Cryptoclidia is constrained by a lack of fossils from outside the Oxford Clay deposits of England. Recent fieldwork in the Sundance Formation of the Bighorn Basin, Wyoming, has resulted in the recovery of significant new fossils of cryptoclidid plesiosaurs, including the small-bodied form Tatenectes laramiensis. A new partial skeleton of this taxon is reported here; it is the most complete and best-preserved example of the taxon found to date, comprising a complete dorsal vertebral series, many ribs and gastralia, and a complete pelvic girdle. This skeleton illuminates several unique features of the taxon, including a novel pattern of midline pachyostosis in the gastralia. In addition, a range of both axial and appendicular morphological features reveals that Tatenectes had a body shape unique among known plesiosaurs, characterized by extreme dorsoventral compression, and modest anteroposterior reduction. The combination of the new skeleton with information from previous finds allows the first reconstruction of the taxon. Tatenectes had a dorsoventrally compressed, oblate spheroid body shape, with a high skeletal mass concentration in the ventral elements. We hypothesize that these features were adaptations for increased near-surface stability, perhaps allowing access to above normal wave base, inshore environments in the shallow Sundance Seaway

    Combinatorial control of temporal gene expression in the Drosophila wing by enhancers and core promoters

    Full text link
    Abstract Background The transformation of a developing epithelium into an adult structure is a complex process, which often involves coordinated changes in cell proliferation, metabolism, adhesion, and shape. To identify genetic mechanisms that control epithelial differentiation, we analyzed the temporal patterns of gene expression during metamorphosis of the Drosophila wing. Results We found that a striking number of genes, approximately 50% of the Drosophila transcriptome, exhibited changes in expression during a time course of wing development. While cis-acting enhancer sequences clearly correlated with these changes, a stronger correlation was discovered between core-promoter types and the dynamic patterns of gene expression within this differentiating tissue. In support of the hypothesis that core-promoter type influences the dynamics of expression, expression levels of several TATA-box binding protein associated factors (TAFs) and other core promoter-associated components changed during this developmental time course, and a testes-specific TAF (tTAF) played a critical role in timing cellular differentiation within the wing. Conclusions Our results suggest that the combinatorial control of gene expression via cis-acting enhancer sequences and core-promoter types, determine the complex changes in gene expression that drive morphogenesis and terminal differentiation of the Drosophila wing epithelium.http://deepblue.lib.umich.edu/bitstream/2027.42/112935/1/12864_2012_Article_4965.pd
    • 

    corecore